Part Number Hot Search : 
Z5250 36C803NQ 4C256 3F064 PIC16F8 4R7M4 ENA1832 CZRT5251
Product Description
Full Text Search
 

To Download UPD16633B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 DATA SHEET
MOS INTEGRATED CIRCUIT
PD16633B
312 OUTPUT TFT-LCD SORCE DRIVER (COMPATIBLE WITH 64 GRAY SCALES)
The PD16633B is a source driver for TFT-LCDs capable of dealing with displays with 64 gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values -corrected by an internal D/A converter and 5-by-2 external power modules. Because the output dynamic range is as large as 9.8 VP-P, level inversion operation of the LCD's common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequency of 45 MHz when driving at 3.0 V, this driver is applicable to XGA-standard TFT-LCD panels.
FEATURES
* Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter * Output dynamic range 9.8 VP-P min. (@VDD2 = 10.0 V) * CMOS level input * Input of 6 bits (gradation data) by 6 dots * High-speed data transfer: fmax. = 45 MHz (internal data transfer speed when operating at 3.0 V) * 312 outputs * Apply for only dot inversion * Display data inversion function (POL2 terminal.) * Single bank arrangement is possible (loaded with slim TCP)
ORDERING INFORMATION
Part Number Package TCP (TAB package)
PD16633BN-xxx
The TCP's external shape is customized. To order your TCP's external shape, please contact a NEC salesperson.
Document No. S13214EJ2V0DS00 (2nd edition) Date Published July 1998 N CP(K) Printed in Japan
(c)
1998
PD16633B
1. BLOCK DIAGRAM
STHR R/L CLK STB STHL VDD1 VSS1 C51 C52
50-bit bidirectional shift register C1 C2
D00-05 D10-15 D20-25 D30-35 D40-45 D50-55 POL2
Data register
POL
Latch
VDD2 Level shifter VSS2
V0-V9
D/A converter
Voltage follower output
S1
S2
S3
S312
2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER
S1 S2 S311 S312
V0 V4 V5 V9 Multiplexer
5
6-bit D/A converter 5
POL
2
PD16633B
3. PIN CONFIGURATION (PD16633BN-xxx (Copper Plated surface) xxx) xxx
VSS2 VDD2 VSS1 R/L POL STB D55 D54 D53 D52 D51 D50 D45 D44 D43 D42 D41 D40 D35 D34 D33 D32 D31 STHL V9 V8 V7 V6 V5 V4 V3 V2 V1 V0 CLK STHR D30 D25 D24 D23 D22 D21 D20 D15 D14 D13 D12 D11 D10 D05 D04 D03 D02 D01 D00 POL2 TEST VDD1 VDD2 VSS2
S312 S311 S310 S309
S4 S3 S2 S1
Caution This figure does not specify the TCP package.
3
PD16633B
4. PIN FUNCTIONS
Pin Symbol S1 to S312 D00 to D05 D10 to D15 D20 to D25 D30 to D35 D40 to D45 D50 to D55 R/L Shift direction control input These refer to the start pulse input/output pins when driver ICs are connected in cascade. The shift directions of the shift registers are as follows. R/L = H : STHR input, S1 S312, STHL output R/L = L : STHL input, S312 S1, STHR output R/L = H : Becomes the start pulse input pin. R/L = L : Becomes the start pulse output pin. R/L = H : Becomes the start pulse output pin. R/L = L : Becomes the start pulse input pin. Refers to the shift register's shift clock input. The display data is incorporated into the data register at the rising edge. At the rising edge of the 52nd clock after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver. The initial-level driver's 52nd clock becomes valid as the next-level driver's start pulse is input. If 54th clock pulses are input after input of the start pulse, input of display data is halted automatically. The contents of the shift register are cleared at the STB's rising edge. The contents of the data register are transferred to the latch circuit at the rising edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure input of one pulse per horizontal period. POL = L ; The S2n-1 output uses V0 to V4 as the reference supply; The S2n output uses V5 to V9 as the reference supply. POL = H; The S2n-1 output uses V5 to V9 as the reference supply; The S2n output uses V0 to V4 as the reference supply. POL2 = H : Display data is inverted. POL2 = L : Display data is not inverted. Input the -corrected power supplies from outside by using operational amplifier. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. VDD2 > V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 > V9 > VSS2 TEST = H or Open: Standard mode TEST = L: Test mode Please input "H" level. 3.3 V 0.3 V 10.0 V to 13.5 V Grounding Grounding Pin Name Driver output Display data input Description The D/A converted 64-gray-scale analog voltage is output. The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6 dots (2 pixels). DX0: LSB, DX5: MSB
STHR
Right shift start pulse input/output Left shift start pulse input/output Shift clock input
STHL
CLK
STB
Latch input
POL
Polarity input
POL2
Data inversion
V0 to V9
-corrected power supplies
TEST
Test pin
VDD1 VDD2 VSS1 VSS2
Logic power supply Driver power supply Logic ground Driver ground
4
PD16633B
Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order. Reverse this sequence to shut down. (Simultaneous power application to VDD2 and V0 to V9 is possible.) 2. To stabilize the supply voltage, please be sure to insert a 0.47 F bypass capacitor between VDD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 F is also advised between the -corrected power supply terminals (V0, V1, V2, ***, V9) and VSS2.
5
PD16633B
5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE
This product incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches. The ladder resistors r0 to r62 are so designed that the ratios between the LCD panel's -corrected voltages and V0' to V63' and V0" to V63" are roughly equal; and their respective resistance values are as shown on page 9. Among the 5-by-2 -corrected voltages, input gray scale voltages of the same polarity with respect to the common voltage, for the respective five -corrected voltages of V0 to V4 and V5 to V9. Figure 1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2 and VSS2, common electrode potential VCOM, and -corrected voltages V0 to V9 and the input data. Be sure to maintain the voltage relationships of VDD2 > V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 > V9 > VSS2. Figures 2-1 and 2-2 show the relationship between the input data and the output data. Table 1 shows the resistance values of the resistor strings. This driver IC is designed for single-sided mounting. Therefore, please do not use it for -corrected power supply level inversion in double-sided mounting. Because the current flowing through ladder resistors r0 to r62 is small, its use for double-sided mounting impairs the IC's stable operation when the level of the -corrected power supply terminal is inverted thus causing display failures. Figure 1. Relationship Between Input Data and Output Voltage
VDD2 0.1 V V0
V1
V2 V3 V4 VCOM V5 V6 V7
V8
0.1 V
V9 VSS2 00 08 10 18 20 28 30 38 3F 40 (Invalid)
Input data (HEX) (POL2 = L)
6
PD16633B
Figure 2-1. Relationship Between Input Data and Output Voltage: VDD2 > V0 > V1 > V2 > V3 > V4 > V5
Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH DX5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DX4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DX3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 DX2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 DX1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 DX0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 V0' V1' V2' V3' V4' V5' V6' V7' V8' V9' V10' V11' V12' V13' V14' V15' V16' V17' V18' V19' V20' V21' V22' V23' V24' V25' V26' V27' V28' V29' V30' V31' V32' V33' V34' V35' V36' V37' V38' V39' V40' V41' V42' V43' V44' V45' V46' V47' V48' V49' V50' V51' V52' V53' V54' V55' V56' V57' V58' V59' V60' V61' V62' V63' Output Voltage V0 V1 + (V0 - V1) x 4500/5300 V1 + (V0 - V1) x 3700/5300 V1 + (V0 - V1) x 2900/5300 V1 + (V0 - V1) x 2200/5300 V1 + (V0 - V1) x 1500/5300 V1 + (V0 - V1) x 900/5300 V1 + (V0 - V1) x 400/5300 V1 V2 + (V1 - V2) x 3600/4000 V2 + (V1 - V2) x 3300/4000 V2 + (V1 - V2) x 3000/4000 V2 + (V1 - V2) x 2700/4000 V2 + (V1 - V2) x 2400/4000 V2 + (V1 - V2) x 2200/4000 V2 + (V1 - V2) x 2000/4000 V2 + (V1 - V2) x 1800/4000 V2 + (V1 - V2) x 1600/4000 V2 + (V1 - V2) x 1400/4000 V2 + (V1 - V2) x 1300/4000 V2 + (V1 - V2) x 1200/4000 V2 + (V1 - V2) x 1100/4000 V2 + (V1 - V2) x 1000/4000 V2 + (V1 - V2) x 900/4000 V2 + (V1 - V2) x V2 + (V1 - V2) x V2 + (V1 - V2) x V2 + (V1 - V2) x V2 + (V1 - V2) x V2 + (V1 - V2) x V2 + (V1 - V2) x V2 + (V1 - V2) x 800/4000 700/4000 600/4000 500/4000 400/4000 300/4000 200/4000 100/4000
V0 r0
V0' V1' r1 V2' r2 V3' r3 V4' r4 V5' r5 V6' r6 V7' r7
V1 r8
V8' V9' r9
r30 V31' r31 V2 r32 V33' r33 V32'
r54 V55' r55 V3 r56 V57' r57 V58' r58 V59' r59 V60' r60 V61' r61 V62' r62 V4 r4-5 V5 V63' 9 k V63" V56'
V2 V3 + (V2 - V3) x 2600/2700 V3 + (V2 - V3) x 2500/2700 V3 + (V2 - V3) x 2400/2700 V3 + (V2 - V3) x 2300/2700 V3 + (V2 - V3) x 2200/2700 V3 + (V2 - V3) x 2100/2700 V3 + (V2 - V3) x 2000/2700 V3 + (V2 - V3) x 1900/2700 V3 + (V2 - V3) x 1800/2700 V3 + (V2 - V3) x 1700/2700 V3 + (V2 - V3) x 1600/2700 V3 + (V2 - V3) x 1500/2700 V3 + (V2 - V3) x 1400/2700 V3 + (V2 - V3) x 1300/2700 V3 + (V2 - V3) x 1200/2700 V3 + (V2 - V3) x 1100/2700 V3 + (V2 - V3) x 1000/2700 V3 + (V2 - V3) x 900/2700 V3 + (V2 - V3) x 800/2700 V3 + (V2 - V3) x 700/2700 V3 + (V2 - V3) x 600/2700 V3 + (V2 - V3) x 400/2700 V3 + (V2 - V3) x 200/2700 V3 V4 + (V3 - V4) x 2300/2500 V4 + (V3 - V4) x 2100/2500 V4 + (V3 - V4) x 1800/2500 V4 + (V3 - V4) x 1500/2500 V4 + (V3 - V4) x 1200/2500 V4 + (V3 - V4) x 800/2500 V4
Caution Between V4 and V5 terminal is connected by using the resistor (9 k) in the chip.
7
PD16633B
Figure 2-2. Relationship Between Input Data and Output Voltage: V4 > V5 > V6 > V7 > V8 > V9 > VSS2
Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH DX5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DX4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DX3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 DX2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 DX1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 DX0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 V0" V1" V2" V3" V4" V5" V6" V7" V8" V9" V10" V11" V12" V13" V14" V15" V16" V17" V18" V19" V20" V21" V22" V23" V24" V25" V26" V27" V28" V29" V30" V31" V32" V33" V34" V35" V36" V37" V38" V39" V40" V41" V42" V43" V44" V45" V46" V47" V48" V49" V50" V51" V52" V53" V54" V55" V56" V57" V58" V59" V60" V61" V62" V63" Output Voltage V9 V9 + (V8 - V9) x 800/5300 V9 + (V8 - V9) x 1600/5300 V9 + (V8 - V9) x 2400/5300 V9 + (V8 - V9) x 3100/5300 V9 + (V8 - V9) x 3800/5300 V9 + (V8 - V9) x 4400/5300 V9 + (V8 - V9) x 4900/5300 V8 V8 + (V7 - V8) x 400/4000 V8 + (V7 - V8) x 700/4000 V8 + (V7 - V8) x 1000/4000 V8 + (V7 - V8) x 1300/4000 V8 + (V7 - V8) x 1600/4000 V8 + (V7 - V8) x 1800/4000 V8 + (V7 - V8) x 2000/4000 V8 + (V7 - V8) x 2200/4000 V8 + (V7 - V8) x 2400/4000 V8 + (V7 - V8) x 2600/4000 V8 + (V7 - V8) x 2700/4000 V8 + (V7 - V8) x 2800/4000 V8 + (V7 - V8) x 2900/4000 V8 + (V7 - V8) x 3000/4000 V8 + (V7 - V8) x 3100/4000 V8 + (V7 - V8) x 3200/4000 V8 + (V7 - V8) x 3300/4000 V8 + (V7 - V8) x 3400/4000 V8 + (V7 - V8) x 3500/4000 V8 + (V7 - V8) x 3600/4000 V8 + (V7 - V8) x 3700/4000 V8 + (V7 - V8) x 3800/4000 V8 + (V7 - V8) x 3900/4000 V7 V7 + (V6 - V7) x V7 + (V6 - V7) x V7 + (V6 - V7) x V7 + (V6 - V7) x V7 + (V6 - V7) x V7 + (V6 - V7) x V7 + (V6 - V7) x 100/2700 200/2700 300/2700 400/2700 500/2700 600/2700 700/2700
V4 r4-5 V5 r62
V63' 9 k V63" V62" r61 V61" r60 V60" r59 V59" r58 V58" r57 V57" r56
V6 r55
V56" V55" r54
r33 V33" r32 V7 r31 V31" r30 V32"
r9 V9" r8 V8 r7 V7" r6 V6" r5 V5" r4 V4" r3 V3" r2 V2" r1 V1" r0 V9 V0" V8"
V7 + (V6 - V7) x 800/2700 V7 + (V6 - V7) x 900/2700 V7 + (V6 - V7) x 1000/2700 V7 + (V6 - V7) x 1100/2700 V7 + (V6 - V7) x 1200/2700 V7 + (V6 - V7) x 1300/2700 V7 + (V6 - V7) x 1400/2700 V7 + (V6 - V7) x 1500/2700 V7 + (V6 - V7) x 1600/2700 V7 + (V6 - V7) x 1700/2700 V7 + (V6 - V7) x 1800/2700 V7 + (V6 - V7) x 1900/2700 V7 + (V6 - V7) x 2000/2700 V7 + (V6 - V7) x 2100/2700 V7 + (V6 - V7) x 2300/2700 V7 + (V6 - V7) x 2500/2700 V6 V6 + (V5 - V6) x 200/2500 V6 + (V5 - V6) x 400/2500 V6 + (V5 - V6) x 700/2500 V6 + (V5 - V6) x 1000/2500 V6 + (V5 - V6) x 1300/2500 V6 + (V5 - V6) x 1700/2500 V5
Caution Between V4 and V5 terminal is connected by using the resistor (9 k) in the chip.
8
PD16633B
Ladder Resistance Value (r0 to r62): Reference Value Table 1. Resistance values of the resistor strings
Resistor Name V0, V9 r0 r1 r2 r3 r4 r5 r6 V1, V8 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 V2, V7 r31 Resistance Value () 800 800 800 700 700 600 500 400 400 300 300 300 300 200 200 200 200 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 Resistor Name r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 r44 r45 r46 r47 r48 r49 r50 r51 r52 r53 r54 r55 r56 r57 r58 r59 r60 r61 r62 Total Resistance Value () 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 200 200 200 200 300 300 300 400 800 14500 V4, V5 V3, V6 V2, V7
9
PD16633B
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN
Data format : 6 bits x 2 RGBs (6 dots) Input width : 36 bits (2-pixel data) R/L = H (Right shift)
Output Data S1 D00-D05 S2 D10-D15 S3 D20-D25 S4 D30-D35 *** *** S311 D40-D45 S312 D50-D55
R/L = L (Left shift)
Output Data S1 D00-D05 S2 D10-D15 S3 D20-D25 S4 D30-D35 *** *** S311 D40-D45 S312 D50-D55
S2n-1 (Odd output), S2n (Even output) n = 1, 2, ******, 156
POL L H S2n-1 V0 to V4 V5 to V9 S2n V5 to V9 V0 to V4
7. RELATIONSHIP BETWEEN STB, POL, AND OUTPUT WAVEFORM
STB
POL
S2n-1
Selected voltage of V0 to V4
Selected voltage of V5 to V9
Selected voltage of V0 to V4
S2n
Selected voltage of V5 to V9 Hi-z Hi-z
Selected voltage of V0 to V4 Hi-z
Selected voltage of V5 to V9
10
PD16633B
8. CAUTIONS ABOUT FRAME INVERSION
In the case of dot inversion, n frame last line and (n+1) frame first line is the same polarity. When write the same polarity twice, there are two cases as follows. (1) last line output in n frame > first line output in (n+1) frame Possible to write (2) last line output in n frame < first line output in (n+1) frame Not possible to write
PD16633B has charge buffer and discharge buffer, so need to inversion polarity and write in the case of both
ways.
Vertical intervals (n+1) frame first line
STB
n frame last line
(n+1) frame second line Charge buffer
POL
Discharge buffer
S2N VCOM
Hi-z
Hi-z
Hi-z
STB
n frame last line
Vertical intervals (n+1) frame first line
(n+1) frame second line
POL
S2N VCOM
Hi-z
Hi-z
Hi-z
Hi-z
11
PD16633B
9. ELECTRIC SPECIFICATION
Absolute Maximum Ratings (TA = 25C, VSS1 = VSS2 = 0 V)
Parameter Logic Part Supply Voltage Driver Part Supply Voltage Logic Part Input Voltage Driver Part Input Voltage Logic Part Output Voltage Driver Part Output Voltage Operating Temperature Range Storage Temperature Range Symbol VDD1 VDD2 VI1 VI2 VO1 VO2 TA Tstg Rating -0.5 to +6.5 -0.5 to +15.0 -0.5 to VDD1 + 0.5 -0.5 to VDD2 + 0.5 -0.5 to VDD1 + 0.5 -0.5 to VDD2 + 0.5 -10 to +75 -55 to +125 Unit V V V V V V C C
Recommended Operating Condition (TA = -10 to +75C, VSS1 = VSS2 = 0 V)
Parameter Logic Part Supply Voltage Driver Part Supply Voltage High-Level Input Voltage Low-Level Input Voltage Symbol VDD1 VDD2 VIH VIL V0 to V9 VO fmax. MIN. 3.0 10.0 0.7VDD1 VSS1 VSS2 + 0.05 VSS2 + 0.1 45 TYP. 3.3 10.5 MAX. 3.6 13.5 VDD1 0.3VDD1 VDD2 - 0.05 VDD2 - 0.1 Unit V V V V V V MHz
-Corrected Voltage
Driver Part Output Voltage Maximum Clock Frequency
Electrical Specifications (TA = -10 to +75C, VDD1 = 3.3 V 0.3 V, VDD2 = 10.5 V 0.5 V, VSS1 = VSS2 = 0 V)
Parameter Input Leak Current High-Level Output Voltage Low-Level Output Voltage Symbol IIL VOH VOL I VVOH VVOL STHR (STHL), IOH = 0 mA STHR (STHL), IOL = 0 mA V0-V9 = 10 V VX = 9 V, VOUT = 3 V VX = 3 V, VOUT = 9 V V0, V9
Note
Condition
MIN.
TYP.
MAX. 1.0
Unit
A
V
VDD1 - 0.1 0.1 0.3 -0.6 0.3 0.6 0.5 -0.3
V mA mA mA
-Corrected Supply Current
Driver Output Current
Note
Note VX refers to the output voltage of analog output pins S1 to S312. VOUT refers to the voltage applied to analog output pins S1 to S312.
12
PD16633B
Electrical Specifications (TA = -10 to +75C, VDD1 = 3.3 V 0.3 V, VDD2 = 10.5 V 0.5 V, VSS1 = VSS2 = 0 V)
Parameter Output Voltage Deviation Average Output Voltage VariationNote 2 Output Voltage Range Logic Part Dynamic Current Consumption Driver Part Dynamic Current Consumption 1Notes 3, 4 Driver Part Dynamic Current Consumption 1Notes 3, 4
Note 1
Symbol VO VAV Input data Input data
Condition
MIN.
TYP. 5 10
MAX. 20
Unit mV mV
VO IDD1
Input data VDD1, No loads VDD2 = 10.5 V 0.5 V, No loads VDD2 = 13.5 V 0.5 V, No loads
0.1 1.6
VDD2 - 0.1 10.0
V mA
IDD21
4.4
8.0
mA
IDD22
6.4
10.0
mA
Notes 1. The output voltage deviation refers to the voltage difference between adjoining output pins when the display data is the same (within the chip). 2. The average output voltage variation refers to the average output voltage difference between chips. The average output voltage refers to the average voltage between chips when the display data is the same. 3. The STB cycle is defined to be 20 s at fCLK = 40 MHz. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern. 4. Refers to the current consumption per driver when cascades are connected under the assumption of XGA single-sided mounting (10 units). Switching Characteristics (TA = -10 to +75C, VDD1 = 3.3 V 0.3 V, VDD2 = 10.5 V 0.5 V, VSS1 = VSS2 = 0 V)
Parameter Start Pulse Delay Time Driver Output Delay Time 1 Driver Output Delay Time 2 Driver Output Delay Time 3 Driver Output Delay Time 4 Input Capacitance 1 Symbol tPLH1 tPLH2 tPLH3 tPHL2 tPHL3 CI1 Condition CL = 25 pF CL = 50 pF, RL = 50 k CL = 50 pF, RL = 50 k CL = 50 pF, RL = 50 k CL = 50 pF, RL = 50 k STHR (STHL) excluded, TA = 25C STHR (STHL), TA = 25C MIN. TYP. 10 6.6 10 6.4 9.1 6.4 MAX. 15 11 17 11 17 15 Unit ns
s s s s
pF
Input Capacitance 2
CI2
6.3
15
pF
13
PD16633B
Timing Requirement (TA = -10 to +75C, VDD1 = 3.3 V 0.3 V, VSS1 = VSS2 = 0 V, tr = tf = 8.0 ns)
Parameter Clock Pulse Width Clock Pulse Low Period Clock Pulse High Period Data Setup Time Data Hold Time Start Pulse Setup Time Start Pulse Hold Time POL2 Setup Time POL2 Hold Time Start Pulse Low Period STB Pulse Width Data Invalid Period Last Data Timing CLK-STB Time STB-CLK Time Time Between STB and Start Pulse POL-STB Time STB-POL Time Symbol PWCLK PWCLK(H) PWCLK(L) tSETUP1 tHOLD1 tSETUP2 tHOLD2 tSETUP3 tHOLD3 tSPL PWSTB tINV tLDT tCLK-STB tSTB-CLK tSTB-STH CLK STB STB CLK STB STHR (L) POL or STB STB POL or Condition MIN. 22 6 6 6 6 6 6 6 6 5 0.5 1 2 5 5 50 TYP. MAX. Unit ns ns ns ns ns ns ns ns ns ns
s
CLK CLK ns ns ns
tPOL-STB tSTB-POL
-5 5
ns ns
14
10. SWITCHING CHARACTERISTICS WAVEFORM (R/L = H) Unless otherwise specified, the input level is defined to be VILH = 0.5VDD1
PWCLK (L) PWCLK PWCLK (H)
1 2 90 %
tr
10 %
tf VDD1 VSS1 VDD1 VSS1
CLK tSETUP2 STHR (1st Dr.)
1
2
3
52
53
54
513
514
tHOLD2
tCLK-STB
tSTB-CLK
tSPL
tSETUP1 D n0 to D n5 INVALID
D1 to D6
tHOLD1
D301 to D306 D307 to D312 D313 to D318
D3067 to D3072
tSTB-STH VDD1 INVALID
D1 to D3 D4 to D6
D7 to D12
VSS1 VDD1
tSETUP3 POL2 INVALID
tHOLD3 INVALID VSS1 tPLH1 VDD1 VSS1 tLDT tINV PWSTB VDD1
STHL (1st Dr.)
STB VSS1 tPOL-STB POL VSS1 tPLH3 Hi-z tPLH2 Target Voltage 0.1 VDD2 tSTB-POL VDD1
Vout
PD16633B
6 bit accuracy tPHL2 tPHL3
15
PD16633B
11. RECOMMENDED MOUNTING CONDITIONS
When mounting this product, please make sure that the following recommended conditions are satisfied. For packaging methods and conditions other than those recommended below, please contact NEC sales personnel.
Mounting Condition Thermocompression Mounting Method Soldering ACF (Adhesive Conductive Film) Condition Heating tool 300 to 350C, heating for 2 to 3 sec; pressure 100 g (per solder) Temporary bonding 70 to 100C; pressure 3 to 8 kg/cm ; time 3 to 5 sec. 2 Real bonding 165 to 180C; pressure 25 to 45 kg/cm , time 30 to 40 secs. (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd)
2
Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more packaging methods at a time. Reference NEC Semiconductor Device Reliability/Quality Control System (C10983E) Quality Grades to NEC's Semiconductor Devices (C11531E)
16
PD16633B
[MEMO]
17
PD16633B
[MEMO]
18
PD16633B
[MEMO]
19
PD16633B
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product.
M4 96. 5


▲Up To Search▲   

 
Price & Availability of UPD16633B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X